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TEMPERATURE RXLAXATION OF A HIGHLY RARIFIED GAS 

V. V. Andreyev, I. F. Mikhaylov, L. V. Tanatarov 

ABSTRACT. The problem of es tab l i sh ing  the  thermal relaxa- 
t i o n  of a  r a r i f i e d  gas i n  a closed volume, the  surface  tem- 
pera ture  d i s t r i b u t i o n  being nonuniform, is discussed. The 
dependence of temperature on s p a t i a l  coordinates and time 
is prese t .  Reflect ion of p a r t i c l e s  from the  boundary is 
talien a s  d i f fus ive .  The p o s s i b i l i t y  of p a r t i c l e  adsorption 
is considered, and t h e  p a r t i c l e  d i s t r i b u t i o n  funct ion f o r  
a  long time i n t e r v a l  is obtained. 

Introduction L721* 

The operating p r inc ip le  of adsorption and condensation vacuum pumps, as hie 

know, is one of reducing the  volume of p a r t i c l e s  i n  the  evacuated volume during 

t h e  cooling of t h e  condensing element a s  the  p a r t i c l e s  a r e  adsorbed on t h e  coo l  

surface.  The development of a  theory f o r  pumps such a s  these  requires  consi- 

dera t ion of the  simplest  model t h a t  can be inves t igated  mathematically, T h a t  

model is an expanse holding a r a r i f i e d  gas, The temperature of walls  capable 

of adsorbing gas p a r t i c l e s  is a speci f ied  function of coordinates and time, 

This model can be used t o  f i n d  the  gas d i s t r i b u t i o n  funct ion i n  terms of ve lo -  

c i t i e s  and coordinates,  t o  a s c e r t a i n  the  influence of s p a t i a l  nonuniformity 

wal l  temperature, and t o  e s t a b l i s h  the  time required f o r  t h e  gas Lo reach e q u i l i -  

brium when the re  is a sharp change i n  the  gas (temperature r e l a x a t i o n ) ,  S ince ,  

under r e a l  condi t ions ,  only the  temperature of t h a t  p a r t  of the  surface  l i m i t -  

ing the  gas changes ( the  cooled surface  of a condensation pump, f o r  example), 

it is of i n t e r e s t  t o  a s c e r t a i n  t h e  time of temperature re laxa t ion  i n  terms o f  

t h e  r a t i o  of the  a rea  of t h i s  p a r t  t o  the  e n t i r e  a r e a  of the  vacuum chamber 

s u r f  ace, 

A r e a l  pump has a macroscopic flow, t h e  r e s u l t  of the  inflow, caused by the 

discharge i n  the  previous stage.  Moreover, always t o  be d e a l t  with is a m i x -  

t u r e  of a  great  many d i f f e r e n t  r e s idua l  gases,  o i l  vapors, and the  l i k e ,  AIL 

of t h i s  serves  t o  g r e a t l y  complicate t h e  mathematical considerat ion of the  pro- 

* Numbers i n  t h e  margin ind ica te  pagination i n  t h e  fore ign t e x t ,  
k 



blem. This paper does not  intend t o  deal  with a l l  the  f a c t o r s  influencing the 

evacuation process,  but r a t h e r  t o  inves t iga te  only the  exhausting ac t ion  of the  

cooled su r face ,  because t h i s  is the  bas i s  of t h e  operating p r inc ip le  o f  conden- 

s a t i o n  and adsorption pumps a l ike .  

1. Statement of the  Problem 

L e t  us consider a  gas contained i n  a volume l imi ted  by a c losed,  convex 

surface  of a r b i t r a r y  shape, f o r  which t h e r e  is given some temperature distribu- 

t i o n  t h a t  depends on coordinates and on time. The gas w i l l  be taken as sari- 

f i e d  t o  the  point  t h a t  1 3 L (1 is the  mean f r e e  path f o r  t h e  p a r t i c l e s ,  L is 

the  c h a r a c t e r i s t i c  dimension of t h e  expanse). Let us seek t h e  p a r t i c l e  d i s d r i -  
-b "s 

bution funct ion i n  terms of coordinates and pulses,  This funct ion,  F(T, p, t! 

w i l l  be s a t i s f i e d  by t h e  k i n e t i c  equation 

L e t  us suppose no ex te rna l  f i e l d s  a r e  ac t ing on the  molecules of gas, I n  L722 
-+ 

such case the  l e f t  s i d e  of Eq, (1)  w i l l  have no summand proport ional  to p. The 

condit ion 1 3 L r e s u l t s  i n  the  i n t e g r a l  of c o l l i s i o n s  equall ing zero, L e t  us 
-9 

designate the  temperature of t h e  surface  of the  expanse a t  point  r ad time t 
3 

by ~ ( r ,  t ) ,  It is apparent t h a t  Eq. (11, by i t s e l f ,  w i l l  not so lve  the Pro- 

blem, It s t i l l  is necessary t o  wr i t e  t h e  boundary condit ion describing the mech- 

anism whereby the  gas p a r t i c l e s  a r e  r e f l e c t e d  from t h e  wall ,  We will. take it 

t h a t  the  p a r t i c l e s  h i t t i n g  t h e  surface  a r e  "thermalized" before they Leave it, 

In  o ther  words, the  d i s t r i b u t i o n  of t h e  p a r t i c l e s  f ly ing  o f f  t h e  su r face  i s  

i s o t r o p i c  i n  d i r e c t i o n ,  and t h e i r  d i s t r i b u t i o n  funct ion is i n  the  form 

3 
Here A does not  depend on pulses ,  and n is an ex te rna l  normal t o  t h e  su r face  a t  

-b 
point  r. 

It is convenient t o  wr i t e  t h e  preexponential f a c t o r  A i n  Eq, ( 2 )  i n  the  form 



where 
-b 

n(r, t) is a function subject to determination. 

The system of Eq. (1) characteristics is in the form 

where 
-9 
r is the point of observation; 

-b -+ 
r t  is that point on the surface off which a particle with pulse p ,  observed 

+ 
at point r, flies; 

-+ + 
TT is the time of flight for this particle from point r' to point I?, 

Obviously 

The solution of Eq, (1) satisfying the condition of Eq, ( 2 )  on the surface 

of the expanse is 

3 ' 3, + 
' F (r, t; p) = Fo (r , d - z; p). 

Let us write the normal component of the flow, 
Jn ' at the wall as 

Utilizing Eqs. (2) and (31 ,  and integrating, we find 



-9 
-f 2 -9-3 -+ - 'R' 

Jn = -3 - n tr, f) + j (pn) d p  
( ' 9  - ) e wxr(r *.r-o . 

-3. 

++ L2rnkT (r', f - z)j2 
(Pfl)>O 

3 
A s  we s e e ,  n ( r ,  t )  is equal t o  t h e  flow of p a r t i c l e s  from the  surface in-  L'23 

s i d e  t h e  volume upon s e l e c t i o n  of normalization es tab l i shed  by E q .  (31, 
3 

In  the  s teady-s ta te  case ,  ~ ( r ,  t )  does not depend on t ,  and J = 0, and 
n 

t h i s  leads t o  the  following i n t e g r a l  equation f o r  f inding the  unkaown function 
-b 

n ( r >  

+ 2 P' 

n ( r )  = - 
Jt (""d; 4 )  -3. ,*. 

3-f [2mkT (r')12 
(P 11)>0 

+ 
Introducing spher ica l  coordinates and d i rec t ing  t h e  Z a x i s  with respect  t o  n ,  

we obta in  

After  in tegra t ing  with respect  t o  p from 0 t o  =, t h e  equation will take the  

form 

- 
1 S n (:) = 7; 1 sin 6 cos BdB dqn $1. ' . 

. . 
0 : . - 0  . . *  . . 

Its s o l u t i o n  is a constant  

-b 

n (r )  = const. . 

We conclude t h a t  i n  the  s teady-s ta te  case the  flow of p a r t i c l e s  from the  

surface  ins ide  the  volume is a constant  magnitude f o r  a l l  points  of the  surface, 

This r e s u l t  was t h e  one obtained i n  reference  [l]. 



2. Adsorption i n  the nonsteady-state case 

Pointed out i n  the preceding section was the f a c t  t h a t  i n  the steady-state 
-b 

case n ( r ,  t )  = constant. This is not so  i n  the nonsteady-state case. 

We w i l l  assume tha t  a l l  gas par t ic les  s t r iking the surface are adsorbed 

(the reflectance equals zero). The flow of par t ic les  desorbing reversibly in- 
+ 

side the volume equals n ( r ,  t). (we are  talking about par t ic les  deposited on the 

surface some time previously, They have been thermalized and now are  being 

desorbed). This flow is proportional t o  the number of par t ic les  on the surface,  

t ha t  is, t o  the magnitude 

The following rela$ionship can be written 

u -- . . 
+ . 1 . k~?, t2) 

. n (r, f )  = - e 
To 

7 is the magnitude of the order of the period of osci l la t ions of an atom i n  
0 

the l a t t i c e  (70 -. sec-I ; 

U is the energy,required f o r  a gas pa r t i c l e  t o  escape from the surface. 

S t r i c t l y  speaking, the condition set fo r th  i n  Eq. (8) is correct only when 

no more than one,layer of par t ic les  is adsorbed on the surface. I f  the en t i r e  
-b 

surface is completely covered by a monolayer of adsorbed par t ic les ,  n ( r ,  t )  L724 

ceases t o  depend on t h e i r  number, so  the ,condition s e t  fo r th  i n  Eq. (8) should 

be written 

where 

G(x) is a function l inear  f o r  small x, and approaching I asymptotically 



when x 3 

where 

a ,  I a r e  constants .  

Let us assume t h a t  t h e  number of adsorbed atoms is smal l ,  and that we  can 

use Eq. (8) .  The d i s t r i b u t i o n  funct ion f o r  the  p a r t i c l e s  f l y i n g  off  the surface 

w i l l  be sought f o r  i n  the  form shown i n  Eqs. (2 )  and ( 3 ) .  Eq. (5) will yield 

the  d i s t r i b u t i o n  funct ion f o r  t h e  p a r t i c l e s  ins ide  t h e  volume. 

Subs t i tu t ing  t h e  Eq. (2 )  d i s t r i b u t i o n  funct ion i n  Eq. (81, we obtain the 
3 

equation f o r  f inding t h e  unknown funct ion n ( r ,  t )  

." - 
+ + 

2m/iT(r'.t'-7) 
n (r', f'- z) e 

X 3 
I2rnkT (r', t' - z)12 

This general  s tatement of the  problem is extremely complex, s o  we sha l l  consider 

i ts  s imples t  var iant .  Let us take it t h a t  the  su r face  temperature is a function 

of time only, and t h a t  t h e  surface  proper is a sphere, L e t  us hypotheca.te the f o l -  

lowing temperature time dependency 

T-, r < 0, - ' 
T (t) = 

T t >o. 

Let us s e l e c t  t h e  o r i g i n a l  condit ion a s  



Because the  temperature changes i n  bounds [according t o  Eq. (1111 the  func- 

t i o n  

which is the  p robab i l i ty  of desorption of t h e  p a r t i c l e ,  too  w i l l  change i n  bounds, 

Then, a s  follows from Eq. (8) 

0 

n, = f (T-) i, J n ( t l )  dt'. 
-00 

And when t > 0 

- 

f (T+) 
n ( t )  = - n -t f f (T-J - 

0 

L e t  us s e t  the  o r i g i n  of t h e  spher ica l  system of coordinate at the point  
-+ 

of observation,  r. Then, from t h i s  point  on t h e  surface  of t h e  sphere 

We obta in  t h e  following expression 



f o r  t h e  flow J ( t ) ,  where 
n 

Applying a one-sided Laplace transform t o  both s i d e s  of Eq, (121, and us ing  

t h e  e x ~ r e s s i o n  w r i t t e n  f o r  J ( t ) ,  we obta in  
n 

Applying t h e  inverse transform we f i n d  

Readily seen is t h a t  

CO 1 /u 
F (x) = \ e-** dy z3e-'* ( 1  - z2y2) &. 

0 0 

We a r e  i n t e r e s t e d  i n  the  asymptotic behavior of n ( t )  f o r  l a rge  t, We must 

know t h e  behavior of t h e  funct ion n ( s )  near zero [ n ( s )  is a form of the Laplace 

funct ion n ( t ) l .  It can be shown t h a t  t h i s  expansion a l s o  Bas t h e  fo rm 0 2 6  



Substituting Eq. (15) in Eq. (141, and integrating 

n (t) = n- 

U -+ l at- 
FIT \ - 

or, using Eq, (13) 

1 + 2~~~~ 
n (t) = n- - X 

3t3 (3t0f?u'/tr- + R 

When adsorption does not occur, Eq. (16) yields 



i f  we s e t  T = 0. 
0 

The asymptotic form of the  funct ion n ( t )  f o r  small t is 

The Eq. ( 9 )  condit ion must be used i f  the re  is a t h i c k  l ayer  of gas rnoiecuPes 

on the  surface  of t h e  expanse ( a  f i l m  of condensate),  We s h a l l  take it t h a t  the 

l a y e r  of adhesive p a r t i c l e s  is s o  t h i c k  t h a t  t h e  lower re la t ionsh ip  o f  E;q, (10) 

is appl icable  t o  Eq, (91,  Then 

Let us now use t h i s  expression t o  f i n d  J , Then n 

The expression obtained is v a l i d  f o r  an expanse of any shape. Integrating 

with respec t  t o  p ,  we obta in  

U 1 r - r '  1Z1n - -- -+ 3 
--- 

1 + +3 2kT-t' 

= - dQ (Qn) (e - 
l a  n 2kT-t2 



2 2 
I f  L m,kT+t < 1, the exponents containing 1: - l 2  can be expanded i n  se r i e s  

and 

3.  Nonuniform Distribution of Temperature on the Surface i n  the Nonsteady- 
s t a t e  case 

The preceding section assumed a bound-like change i n  temperature taking 

place simultanebusly over the en t i r e  surface. Now we sha l l  assume tha t  it takes 

place only over a par t  of tha t  surface. In other words, before time t = 0 the 

temperature of the en t i r e  surface is equal t o  T-, and a t  time t = 0 the temperature 

of par t  S of the surface w i l l  equal T+, and w i l l  then remain so. Moreover, 
1 

we sha l l  take it tha t  a t  t = 0 qui te  a thick layer of gas par t ic les  already 

has condensed on the surface such tha t  the flow of par t ic les  evaporating from 

tha t  surface w i l l  depend solely.on the temperature, or 

where A is a constant. 

The flow J- over tha t  par t  of the surface where the temperature remains 
n 

equal t o  T-, even when t 9 0 ,  is 

. - - -- 
50 

-b -- p l ' +  

n- (r', f - ?) + 
0 



where U - - + -b 
n+(r1 , t - 7 )  = Ae n(r) is the solid angle corresponding to that 
- 

part of the surface, S1, the temperature of which is changing, and the lines 

containing the integral signify integration with respect to the remainder of the 

surf ace. 

The expression for J- can be written in another way, thus 
n 

-b \ + +  
Q ( f )  I r-r' Irn 

or, after integrating with respect to p, 

when ~ ~ r n / t ~ k ~ +  6 1 . 



Eq. (17) shows t h a t  J < 0 ,  t h a t  is ,  t h a t  t h e  surface  beyond the Limits 
n 

of S is united by the  molecules of the  condensate. 
1 

The flow a t  any point  of S can be found by using t h e  formula 
1 

*\ 

The second summand is small because of the  smallness of l /TT  dn and (fin) , o r ,  

ni3 
the  smal ler  the  s e c t i o n  of the  su r face ,  t h e  c l o s e r  it is t o  a plane, 

Eq, (17 ) shows t h a t  J+ > 0. Some of t h e  condensate is pumped f r o m  hot 
n L72S 

s i t e s  on t h e  surface  t o  cold. 

Eqs. (17 ' )  and (17) remain v a l i d  s o  long a s  a t  l e a s t  a few atomic layers  

of condensate remain on the  s e c t i o n  of t h e  surface  with temperature Td, BUT 
+ 

n ( r ,  t) depends on arguments a l l  its own, and t h i s  dependency can be found through 
+ 

Eq. (8).  The funct ion n (r ,  t )  remains a s  before. + 
3 

Expressing the  flow J i n  terms of n (r ,  t )  , and s u b s t i t u t i n g  it i n  Q, 481, n - 3 
we obta in  an i n t e g r a l  equation f o r  f inding t h e  function n (r, t )  - 

-+ t 
n- ( r ,  t )  =- n- +f J d t l :  [ d ~ ( ~ n ) ( l  -0-W + X 
f (T-) f (T-1 

0 + 
' Q ( r )  



-+ -P 
If we introduce a new, unknown funct ion 5 ( r ,  t )  = n (r, t) - n , and designate - - 

the  above equation can be rewr i t t en  i n  t h e  form 

Completing the  one-sided , b p l a c e  transform with respect  t o  the  variable t 
-is 

over both s ides  of Eq.(18), and designating t h e  form of t h e  funct ion s ( r ,  C) by 
-P 

5 ( r ,  s), we obta in  

+++ -+ -t + -++ s -* 
3t 'S dQ (Qn) [ E  (r .  s) - F, (r', s)] + F, (r,  s) - 

3t 

-- 
kT+ - d (6) { A  i+S (i+s) - n-t-c (f- s)) . 2z 

A 



3 
The behavior of 5 ( r ,  t )  f o r  the  case of long time i n t e r v a l s  is of inrerest 

3 
t o  us. It is determined by t h e  asymptotic behavior of 5 (r, s )  f o r  small s(s < 11, 
L e t  us use the  Eq. (20) expansion, and seek the  so lu t ion  of Eq. (19) i n  the form 

of t h e  s e r i e s  

Subs t i tu t ing  Eq. (21) i n  Eq. (191, and grouping terms with identical powers 

of s ,  we obta in  a chain of i n t e g r a l  equations f o r  f inding t h e  unknown functions 
N - 

5 So,  S1, . . . , go,  5, etc.  A t  t he  same time 
-1 

from whence it follows t h a t  

-b - u / q  
lim E(r. t )  = Ae - n- , 
1+co 

3 
Jim n- (r, t) = Ae ' 

t-fo, 

This r e s u l t  can be understood if it is r e c a l l e d  t h a t  i n  the  steady-state 
3 

case n ( r ,  t) should not  depend on t h e  coordinate,  but r a t h e r  on the  section of 

u 
3. 

-- 
the  su r f  ace,  S1, where t h e  temperature T=T+, n (r, 4 = .4e 'Ti- for any value 

. . of t , including t + 

Since L73 1 

is a funct ion t h a t  is regu la r  a t  zero with respect  t o  the  va r iab le  s ,  applying 

it t o  t h e  inverse transform 



we obtain a function t h a t  is a t  the  very l e a s t  decreasing exponentially with 

time ( f o r  long time in te rva l s ) .  
N 

We are  read i ly  persuaded t h a t  5 0 ,  g l ,  i2 equal zero,  and we obtain the fol- - -+ 
lowing equation f o r  5 (r)  

3 
- -  . 

3 + + -  -+ 

g3 (4 A 7 dQ (Qn)  % (r') = X 

-9 - " 3 The summand i n  the  expression f o r  { ( r , t ) ,  corresponding t o  the  term 5 (1-1s 
3 

i n  Eq. (21) proves t o  be 
. . 

t h a t  is, 

We must make ce r t a in  assumptions with respect  t o  the  shape of the  expanse, 

and t h a t  sec t ion  of it, S , where the  temperature changes from T t o  T in order 
-9 

- + 
t o  determine the  function 5 ( r ) .  Let us assume t h a t  t he  expanse is a sphere 

3 
with radius R ,  and t h a t  S is the  surface of a spher ical  segment corresponding 

1 
t o  the  polar  angle t? 

0 - 
-+ 

L e t  us s e l e c t  the  o r ig in  of the  spher ical  coordinates a s  the  point  x, Then 

. ,  
+ *  

dQ (Qn) = sin O cos Odq. 

If the  o r ig in  is sh i f t ed  t o  the  center  of the  sphere, and i f  the  corresponding 

polar angle is designated 9 1 ,  obviously t?' = 28, and - 1 1 dQ (an) = - sin 6'd6'dq = - dS, 
4 4~~ 



where dS is an element of the  su r face  of the  sphere. Now l e t  u s  change  he 

d i r e c t i o n  of the  po la r  a x i s ,  causing it t o  coincide with the  diameter passing 

through the  cen te r  of the  s p h e r i c a l  segment, and l e t  us once again integrate 

with respec t  t o  the  angle ,  ins t ead  of with r e spec t  t o  the  su r face ,  Eq, ( 2 3 )  

can be w r i t t e n  

4 9 9 2  + -9 - 4 . +  1:- :I4 = 4R ( 1  - r inf )  , where = r/R. n 1  = r l / F  

++ 
nnl  = cos 9 cos 91 + s i n  8 s i n  9' cos (tp - T I ) ,  here 8, ep ,  9 1 ,  T I ,  are t h e  polar 

3 3 
and azimuth angles of the  po in t s  r and r l .  

I n t e g r a t i o n o f  t h e  r i g h t  s i d e  of Eq. ( 2 5 )  with respec t  t o  the  angle c;?" 

- 
-4 

5 ( r )  obviously is a funct ion  of cos 9. Designating cos 9 = x, cos 0" x q ,  l e t  
3 

us i n t e g r a t e  both summands i n  t h e  r i g h t  s i d e  of Eq. ( 2 5 )  with respec t  t o  s t ,  We 

obta in  

a 
-a- -a- m 2 ~ "  
g (r)  - $ J g ( X I )  dx' = Af-u'kT+) - 

9 (kT-12 @- - 
-1 

-U/kT+ 1 4 u 
-Ae -m]{s+(l+a)[-T-, %+$I (1 - a), 

- - -  
, 

Here CY = cos 8 
0 ' 



The s o l u t i o n  of t h i s  equat ion  is 

h l a t  fo l lows  from t h e  express ion  obta ined  f o r  5 (x)  and from EQ, ( 2 4 )  is 
3 

t h a t  t h e  c h a r a c t e r i s t i c  t ime of temperature r e l a x a t i o n  f o r  smal l  on, zhat  i s ,  cke 
-b 

V 

t ime over  which x ( r ,  t ) , a p p r o a c h e s  its l i m i t ,  determined through Eq, (221,  i s  

propor t iona l  t o  ( s / s ~ ) ~ / ~ ,  where S is t h e  e n t i r e  s u r f a c e  of t h e  expanse, and S 
i 

is t h a t  p a r t  of it t h e  temperature of which changes from T t o  T , - + 
3 m 

S ince  J m N  an( . r ,  t ) / a t ,  and f o r  long time i n t e r v a l s  n w  l/t (rn equals  t h r e e ,  
11 

o r  f o u r ) ,  Jn - l/tmtl. Thus, t h e  f u l l  f low tends  t o  ze ro  more r a p i d l y  than 
-b 

does n ( r ,  t )  t o  its l i m i t ,  s o  t h e  r e l a x a t i o n  time must be considered t h e  eharac- 

t e r i s t i c  t ime f o r  t h e  es tab l i shment  of  a s t e a d y - s t a t e  f low of desorbing p a r t i c l e s ,  L73: 

The r e s u l t s  show t h a t  t h e  f low of p a r t i c l e s  being s e t  up is determined by 

t h e  lowest temperature of t h e  co ld  su r f ace ,  The time r equ i r ed  t o  e s t a b l i s h  the 

s teady-state  deso rp t ion  f low ( t h e  temperature r e l a x a t i o n  t ime)  is p ropor t iona l  

t o  t h e  square r o o t  of t h e  f o u r t h  power of t h e  r a t i o  of t h e  e n t i r e  area of xhe 

i n t e r n a l  s u r f a c e  of t h e  vacuum chamber t o  its co ld  park. 

Let u s  emphasize t h e  f a c t  t h a t  t h e  r e s u l t s  ob ta ined  a r e  v a l i d  f o r  s u r f a c e s  

s a t i s f y i n g  t h e  cond i t i on  of convexi ty,  and which have one c h a r a c t e r i s t i c  dimen- 

s ion ,  Moreover, we made use  of t h e  assumptions t h a t  any p a r t i c l e  f l y i n g  i n  a 

d i r e c t i o n  toward t h e  s u r f a c e  s e t t l e s  on t h a t  s u r f a c e  ( i s  adsorbed) ,  and is 

" the r rna l i~ed .~ I  But it should " s e t t l e 1 '  on t h i s  su r f ace  f o r  some time (of the order  

of 7 ) f o r  t h i s  t o  occur. This  does t ake  p l a c e ,  e v i d e n t l y ,  a t  temperatures  near 
0 

t h e  condensat ion temperature.  The r e f l e c t a n c e  must be taken  a s  o t h e r  tlian zero  

a t  h igh  tempera tures ,  and t h i s  g r e a t l y  complicates  t h e  problem. 

I n  conclus ion ,  t h e  au tho r s  w i t h  t o  thank Doctor of Phys ica l  and Mathematical 

Sciences R. N. Gruzhi f o r  reviewing t h e  manuscript and f o r  h i s  va luable  recom- 

mendations. The au tho r s  a l s o  wish t o  thank A. M. Kadigrobova f o r  her observations 

b and advice. 
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